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Introduction
We seek to understand micro-scale momentum exchange among fluids and granu-
lar solids (e.g. air, water, and sand). The long-term research program is to inform
coastal and riverine sediment transport modeling at practical engineering scales,
with micromechanical simulations. To this end, we have developed a computa-
tional laboratory that can simulate two-phase fluid flow and rigid particle interactions
across regimes and processes characterizing important engineering applications.
To resolve these processes at the grain scale requires development of numerical
methods that are robust and accurate through topological changes in the air, wa-
ter, and solid phase distributions. These changes occur frequently due to changing
granular contacts and fluid saturation distributions. This work presents several new
techniques under investigation to improve the accuracy and robustness of the exist-
ing framework.

Figure 1: Surf zone wave breaking and erosion processes.

Background
• To model air and water, including surface tension effects, coupled with solid grain

dynamics, including solid contacts, we need to model two dynamic interfaces:
the fluid-fluid (air-water) interface, Γf , and the fluid-solid interface, Γs as shown in
Figure 2.

• Due to changing inter-granular contacts and bubble/droplet formation, the model
formulation or numerical method must handle topological change of the phase
subdomains,Ωs,Ωw,Ωa, robustly and accurately.

• In this work we extend the level set method presented in [6] to address the chal-
lenge of topological change in fluid-fluid-solid simulation numerically, leading to
the definition of scalar functions φs and φf with the following properties:

Ωs(t) = {x ∈ Ω|φs(x, t) < 0} (1a)
Ωw(t) = {x ∈ Ω|φf(x, t) < 0} (1b)
Ωa(t) = {x ∈ Ω|φf(x, t) > 0} (1c)
Γs(t) = {x ∈ Ω|φs(x, t) = 0} (1d)
Γf(t) = {x ∈ Ω|φf(x, t) = 0} (1e)
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Figure 2: The fixed computational domain Ω and boundary Γ, with three dynamic
subdomains Ωw, Ωa, and Ωs and phase boundaries Γf and Γs

Prior Work in Proteus and Chrono
In prior work, we have developed a numerical laboratory combining Finite Element
Methods (FEMs) from Proteus (https://proteustoolkit.org), and Discrete
Element Methods (DEMs) from Chrono (https://projectchrono.org). The
approach is based generally on level set methods, while using regularized Heavi-
side and Dirac functions to approximate volume and surface integrals on cells cut
by the interface. These methods can produce qualitatively correct results for prob-
lems involving granular contacts and surface tension [11, 10]. Also of note is the
recently proposed Level Set DEM method [5], which supports direct calculation of
solid phase dynamics from imagery while using a level set description consistent
with the approach in Proteus for fluids.

Figure 3: Bubble dynamics using the level set method and an approximation of the
Laplace-Beltrami operator to model surface tension.

Figure 4: Grain dynamics in water and air/water flows based on regularized Heavi-
side and Dirac distributions to enforce fluid-solid coupling.

Challenges
Our prior work has uncovered several issues with the unfitted level set approach for
both air/water and air/water/solid applications, specifically:

• Strong mesh sensitivity of critical integral quantities, such as the drag and torque
on particles shown in Figure 4.
• Difficulty resolving thin jets and related shear layers.
• Inability to preserve certain equilibrium states, such as flat water surface at hy-

drostatic pressure and zero velocity (lake at rest).

These issues arise from the use of regularized Heaviside and Dirac functions to ap-
proximate integrals in cells cut by interfacial boundaries, which reduces accuracy of
the method to O(h). We seek to replace these integrals with exact computations
and precise enforcement of interfacial jump conditions.

Figure 5: Force (drag) and surface area due to various unfitted representations.

Primitive Formulation
∇ · ua = 0, in Ωa (2a)

ρa(∂tua + (ua · ∇)ua)−∇ · σa = ρag, in Ωa (2b)
∇ · uw = 0, in Ωw (2c)

ρw(∂tuw + (uw · ∇)uw)−∇ · σw = ρwg, in Ωw (2d)
ua − uw = 0 on Γf (2e)

σa · nf − σw · nf = γκnf on Γf (2f)
σa · t1,f − σw · t1,f = 0 on Γf (2g)
σa · t2,f − σw · t2,f = 0 on Γf (2h)

u− us = uc on Γs (2i)
u · n = 0 on Γ (2j)

where

σ = −pI + 2µε(u) (3)

is the Cauchy stress tensor for an incompressible, Newtonian fluid, and

ε(u) =
1

2

(
∇u +∇uT

)
(4)

is the symmetric gradient. Gravitational accelerations is g, and the material prop-
erties are the densities, ρa, ρw, viscosities µa, µw, and surface tension constant γ.
Note: this model allows for a jump in the normal component of fluid stresses at
the air/water interface due to surface tension and slip velocity uc due to contact line
dynamics.

Nitsche’s Method and CutFEM
Nitsche developed an approach to approximately enforcing Dirichlet conditions that
for an elliptic equation leads to the weak formulation: Find uhinVh(Ω) such that

ah(uh, wh) = 〈f, w〉 ∀wh ∈ Vh(Ω) (5)

where

Vh(Ω) =
{
v ∈ C0(Ω) : v|K ∈ P 1(K), ∀K ∈ Th

}
(6)

and

ah(uh, wh) =

∫
Ωf

µ∇uh · ∇wh+ (7)∫
Γs

−µ∇uh · nwh − µ∇wh · nuh +
C

h
uhwh (8)

< f,wh > =

∫
Ωf

fwh −
∫

Γs

µ∇whus +

∫
Γs

C

h
uswh (9)

where C is a numerical parameter. This formulation provides a precise (discretely
conservative) numerical flux at the boundary and retains the underlying symmetry
of the problem.

Nitsche’s method was originally applied in the context of immersed boundary meth-
ods in [2]. A key idea of this approach is to locate “cut” cells of the triangulation K
such that K ∩ Γf 6= ∅ and K = Ka ∩Kw where Ka = Ωa ∩K and Kw = Ωw ∩ k and
use the local basis on K twice (i.e. double the number of degrees of freedom on
K), associating one set of basis functions with Ka and one with Kw. Then Nitsche’s
method can be applied over the boundary cut ΓK separating the polygonal cells Ka

and Kw. For the embedded solid grain boundaries, the natural extension of the
CutFEM approach [1]

In the CutFEM approach for embedded solids, a “ghost penalty” must be added to
prevent loss of coercivity and bound the matrix condition number independently of
the location of the cuts, Γk. This term is critical for moving solids and unstructured
meshes, as Figure 6 demonstrates for a simple flow through an embedded duct.

j(uh, vh) :=
∑
F∈FG

∫
F

[γ(∇u+ −∇u−) · n][(∇w+ −∇w−) · n)]dS (10)

where FG is the set of internal element boundaries of cut cells.

Figure 6: CutFEM without ghost penalty (left) and with ghost penalty (right).

Immersed Interface Method (IFEM)
For two-fluid immersed interface problems, Leveque and Li developed a second or-
der accurate finite difference scheme for by enforcing jump conditions for the solution
and normal derivatives across the interface [7, 8]. This approach was extended to
FEM in the Immersed Finite Element Method (IFEM), by constructing a local basis
with the desired jump conditions[9]. A key insight is that the algebraic system that
results from doubling the number of degrees of freedom (as in CutFEM) leads to a
solvable algebraic system for exactly half the duplicated degrees of freedom. Con-
sider and elliptic immersed boundary problem with homogeneous jump conditions.

[u] = 0 [µ∇u · nf ] = 0 on Γf (11)

To illustrate construction of the modified basis on cut elements, consider one dimen-
sion where the cut element K is (x0, x1) = (0, 1), Γf = xc ∈ (0, 1), and nf = 1. Define
a new basis, ψ0, ψ1 on K by

ψi =

{
ψai = a1 + a2x x ≤ xc

ψwi = b1 + b2x x > xc
(12)

ψai (x0) = δi0 (13)
ψbi (x1) = δi1 (14)
ψai (xc) = ψbi (xc) (15)

µa∇ψbi · nf = µw∇ψbi · nf (16)

Constraints 13-16 are a system of four linear equations in the unknowns a1, a2, b1, b2.
The solution for µa = 1, µw = 2 is shown in Figure 7 below, where the standard linear
basis functions are (black) and modified IFEM basis functions are (solid red/blue).
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(Figure 7.)

For the linear basis functions on simplicial cells, the number of additional coefficients
and constraints continue to match as the dimension increases, and the linear sys-
tem is non-singular [9]. The two-dimensional basis functions are shown in Figure
8.
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Figure 8: IFEM basis functions (solid red/blue) for µw/µa = 2.

In two dimensions and higher the local element basis results in a non-conforming fi-
nite element method as global continuity is lost along the simplex boundaries (away
from the nodes) as can be seen in Figure 8. It has been shown that methods based
on this non-conforming basis, with the addition of an cell boundary penalty term,
yields a symmetric, non-conforming scheme with optimal convergence in L1, L2,
and L∞ [4].

Cut Cell Integration by Equivalent
Polynomials
CutFEM and IFEM introduce cut cells, which are challenge to integrate. After the
phase boundaries move, new cell and/or boundary integrals must be computed.
If the geometry is based on piecewise linear level sets, then one can locate the
linear cuts and generate a sub-triangulation on the fly. An alternative approach
described by Ventura and Benvenuti [12], and a closely related to technique for
quadrature rules by Holdych and Noble [3], makes use of equivalent polynomial sur-
rogates to the exact Heaviside and Dirac distributions. The key insight is that in
finite element methods the integrands that arise are often polynomials with known
maximum degree. Integration of cut cells and boundaries using the equivalent
polynomials is exact up to the maximum polynomial degree of the integrand. As
an example consider a triangular cell K with integrand f ∈ Pm(K) cut by lin-
ear interface Γ = {x ∈ K : φh(x) = 0}. Define the equivalent polynomial Heaviside
Ĥ(φh(x)) ∈ Pm(K) as

∫
K

Ĥvi =

∫
K

Hvi i = 1, . . . ,dim(Pm(K)) (17)

where Ĥ is also a polynomial of degree m. Straightforward manipulations lead to
equivalent polynomials for the Dirac function, δ(φ). For triangular cells cut by piece-
wise linear level sets, all cut cells and boundaries can then be integrated exactly
with standard quadrature of order 2m.

Future Work
• Determine parallel scaling and performance characteristics of the 3D numerical

laboratory.

• Incorporate the full set of jump conditions for Navier-Stokes into the IFEM imple-
mentation.

• Develop a modeling approach for contact line dynamics.
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